
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Towards Relational Contextual Equality Saturation
TYLER HOU, UC Berkeley, USA

SHADAJ LADDAD, UC Berkeley, USA

JOSEPH M. HELLERSTEIN, UC Berkeley, USA

Equality saturation is a powerful technique for program optimization. Contextual equality saturation extends

this to support rewrite rules that are conditioned on where a term appears in an expression. Existing work

has brought contextual reasoning to egg; in this paper, we share our ongoing work to extend this to relational

equality saturation in egglog. We summarize the existing approaches to contextual equality saturation, outline

its main applications, and identify key challenges in combining this approach with relational models.

Additional Key Words and Phrases: e-graphs, program analysis, query optimization

1 INTRODUCTION
In recent years there as been a surge of interest in using equality saturation to optimize programs

[10]. Equality saturation is an optimization technique which repeatedly applies rewrite rules to

an program. These rewrite rules add equalities between (sub)terms of the expression to a data

structure called an e-graph. The e-graph represents a possibly-infinite set programs equivalent to

the original program. Finally, an optimized program can be extracted from the e-graph.

However, existing equality saturation tools like egg [11] and egglog [12] do not natively support

contextual equalities. Contextual equalities are equalities between terms that are valid in some

subgraph, but may not be valid in general. For example, consider the ternary 𝑥 == 2 ? (𝑥 × 𝑦) : 𝑦.
Under the then branch of the ternary, the condition 𝑥 == 2 is satisfied, so an optimizer could

replace the multiplication with a bitshift, producing an optimized expression 𝑥 == 2 ? (𝑦 ≫ 1) : 𝑦.
However, equating the term 𝑥 × 𝑦 with 𝑦 ≫ 1 in general is not valid, because 𝑥 × 𝑦 may appear in

some other term where the condition is not satisfied.

Reasoning under contexts is necessary inmany program optimizers to achieve better performance.

For example, by applying context-aware optimizations to circuit design, an RTL optimization tool

reduced circuit area by 41% and delay by 33% [1]. In addition, reasoning about contextual properties

like sort order is critical for dataflow optimization and relational query optimization [4, 8].

2 EXISTING APPROACHES
There have been various approaches to support contextual reasoning in equality saturation frame-

works. The authors of the RTL optimization tool encoded contextual reasoning in egg by adding

ASSUME(x, c) e-nodes to the e-graph, where x is the expression to be optimized, and c is a set of

expressions which represent known constraints [1]. Auxiliary rewrite rules “push down” ASSUME
e-nodes into the expression tree, adding additional constraints when appropriate. Finally, after

ASSUME e-nodes have been pushed down sufficiently far, domain-specific rules rewrite them into

more efficient terms using the constraints. However, the main limitation of this approach is that

these “extra” ASSUME e-nodes significantly expand the size of the e-graph, harming performance. In

their tool, optimization of a floating point subtactor took 22 minutes, with the majority of time

spent in e-graph expansion [1].

An alternative to adding explicit ASSUME e-nodes into the e-graph is to annotate e-classes with

the contexts that they appear in via a top-down analysis. Then, a contextual rewrite rule can

“copy” the contextual subgraph, replacing subterms that can be contextually rewritten with their

equivalents [2]. However, this approach can also substantially expand the e-graph: to avoid false

Authors’ addresses: Tyler Hou, UC Berkeley, , USA, tylerhou@berkeley.edu; Shadaj Laddad, UC Berkeley, , USA, shadaj@cs.

berkeley.edu; Joseph M. Hellerstein, UC Berkeley, , USA, hellerstein@cs.berkeley.edu.

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Tyler Hou, Shadaj Laddad, and Joseph M. Hellerstein

equalities, such a rewrite must make independent copies of all contextually-rewritten e-classes and

their ancestors, up to and including the “source” of the context. When multiple contexts are nested,

this can again lead to a combinatorial explosion of the e-graph size. Finally, copying the e-graph

also makes it more expensive to apply context insensitive rewrites – such rewrites may have to

match all copied subgraphs since they are no longer related to the original subgraph.

A promising approach for efficiently supporting contextual equalities are colored e-graphs [9].

Instead of adding new e-nodes to the e-graph, colored e-graphs support multiple equivalence

relations: a base equivalence relation represents equalities that apply in every context, and context-

sensitive, colored equivalences are layered on top of the base relation. These layered relations can

be thought of “shallow” copies of the base relation. This approach has two advantages: first, it

saves memory because context-sensitive rewrites typically add relatively few equivalences on top

of the base equivalence. Second, when additional base equivalences are found, the context-sensitive

equivalence relations can be efficiently updated. However, one limitation of the colored e-graph

work is that it targets the egg library, which implements non-relational e-matching.

3 CASE STUDIES
To better understand the space of applications that can benefit from contextual equality saturation,

we explore three case studies from a range of optimization domains.

3.1 RelationalQuery Optimization
Database engines work by translating user-provided queries (often in SQL) down to a query plan,

then repeatedly applying rewrite rules to find more efficient plans. For example, consider the SQL

query in Fig. 1, which finds all nodes reachable in a path of exactly three steps from a source node

with id 100. The initial plan uses merge joins, which is reasonable if we assume that the relations

are sorted or indexed on the join columns. But there is room for improvement, since the selection

𝜎 l.source=100 can be pushed down past the joins. The left side of Fig. 2 shows a plan where 𝜎 l.source=100

has been pushed down as far as possible. This optimization can be discovered through equality

saturation with a rewrite rule that appropriately commutes selections with joins.

SELECT r.target

FROM edges AS l

JOIN edges AS m ON l.target = m.source

JOIN edges AS r ON m.target = r.source

WHERE l.source = 100;

𝜋r.target

𝜎l.source=100

merge ⊲⊳m.target=r.source

merge ⊲⊳ l.target=m.source

𝜌 l/e (e) 𝜌m/e (e)

𝜌 r/e (e)

Fig. 1. An example SQL query searching for paths of length three and its corresponding initial query plan.

However, such a plan may still not be optimal; after selection, the inputs to the bottom join may

be relatively small. If relations are small and fit in memory, then it may be more efficient to hash

join them. Thus, we would like to replace the merge join merge ⊲⊳ l.target=m.source with a hash join

hash ⊲⊳ l.target=m.source. But unconditionally rewriting merge joins to hash joins is not valid—merge

joins preserve sort order, but hash joins do not. For example, if a merge join 𝐽 is being fed to an

operator which requires that its inputs be sorted (e.g. another merge join, as in the left plan in

Fig. 2, or a non-commutative aggregation), it is not valid to replace 𝐽 with a hash join.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Towards Relational Contextual Equality Saturation 3

𝜋r.target

merge ⊲⊳m.target=r.source

merge ⊲⊳ l.target=m.source

𝜎l.source=100

𝜌 l/e (e)

𝜌m/e (e)

𝜌 r/e (e)

𝜋r.target

merge ⊲⊳m.target=r.source

sortm.target

hash ⊲⊳ l.target=m.source

𝜎l.source=100

𝜌 l/e (e)

𝜌m/e (e)

𝜌 r/e (e)

Fig. 2. Optimized versions of the default query plan in Fig. 1. In the left plan, the selection on l.source = 100

has been pushed down past the joins. In the right plan, the bottom merge join on l and m has been replaced
with a hash join; a sort has been added above to enforce that the inputs to the top merge join are sorted.

It is not difficult to fix this though: we can add a sort enforcer [5] underneath the top merge join

that sorts its left input on the m.target column. Underneath the sort enforcer, it is contextually valid
to rewrite merge joins to hash joins, because all sub-plans will be eventually sorted on the m.target

column. The right hand query plan in Fig. 2 shows the query plan with the sort enforcer added and

bottom merge join replaced with a hash join.

More generally, in database query optimization, query (sub-)plans must often satisfy certain

physical properties, because their outputs are fed to consumers who rely on those physical properties

[5]. Physical properties include sort order, partitioning, and data location. In general, valid rewrites

must preserve physical properties. However, in certain contexts, like underneath a sort enforcer,

additional rewrites that “break” physical properties become valid, because those physical properties

will be re-established by the enforcer.

3.2 Simplifying Conditionals
As shown in the introduction, contextual equality saturation can also be used to discover rewrites

for conditional statements. The ternary 𝑥 == 2 ? (𝑥 × 𝑦) : 𝑦 can be rewritten to the ternary

𝑥 == 2 ? (𝑦 ≫ 1) : 𝑦, since under the if branch of the ternary, we know that 𝑥 == 2, which yields

the chain of equalities 𝑥 × 𝑦 ≡ 2 × 𝑦 ≡ 𝑦 ≫ 2.

But not only can contextual equality saturation reason under conditionals, in some circumstances,

it can remove conditional statements entirely. Consider another ternary (𝑎 > 𝑏) ? (𝑎 > 𝑏) : (𝑎 ≤ 𝑏).
With contextual equivalences, one might reason:

(1) Under the then branch of the ternary, we have the additional equivalence 𝑎 > 𝑏 ≡ true.

Hence, the e-class inside the then branch contains the terms {𝑎 > 𝑏, true}.
(2) Under the then branch of the ternary, we have the additional equivalence ¬(𝑎 > 𝑏) ≡ true.

Another (general) rewrite rule could rewrite ¬(𝑎 > 𝑏) ≡ 𝑏 ≤ 𝑎, so, by transitivity, 𝑏 ≤ 𝑎 ≡
true. The e-class inside the else branch would contain the terms {¬(𝑎 > 𝑏), true, 𝑏 ≤ 𝑎}.

(3) An “intersecting” rule says if the bodies of both branches is equivalent to some term 𝑡 ,

then the entire ternary is equivalent to 𝑡 . That is, because both the e-classes for the then
branch and the else branch contain the term true, then the entire ternary is equivalent to

true:

(
(𝑎 > 𝑏) ? (𝑎 > 𝑏) : (𝑎 ≤ 𝑏)

)
≡ true. (This rule is corresponds to the “disjunction

elimination” or “proof by cases” inference rule in propositional logic [9].)

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Tyler Hou, Shadaj Laddad, and Joseph M. Hellerstein

We note that step 3 “converts” contextual equivalences within the branches of the ternary into

context-insensitive equivalences by taking the “intersection” of two equivalence relations. In order

to support such reasoning, a contextual equality saturation framework needs to let a user write

rules that can refer to and manipulate (contextual) equivalence relations.

3.3 Lambda application
Finally, we show an example where contextual reasoning can simplify the body of a lambda

application. This type of contextual reasoning is similar to conditional simplification, except has

one additional complication. Consider the lambda application (𝜆𝑥.𝑥 + 1)2. We want to show that

the entire term is equal to 3. Because 2 is applied to 𝜆𝑥 .𝑥 + 1, we can contextually equate 𝑥 ≡ 2

within the body of the lambda. Then, using a context-insensitive rewrite rule 2 + 1 ≡ 3, we can

transitively find the equivalence 𝑥 + 1 ≡ 3, inside the lambda body. This means that the entire

lambda application (𝜆𝑥.𝑥 + 1)2 ≡ (𝜆𝑥.3)2.
Here is the complication: we want to simplify the entire lambda application to 3, but so far we

have only simplified the body. Just like in conditional rewriting, how might we “convert” contextual

equivalences on the body to context-insensitive equivalences on the entire application? One might

suggest the following (incorrect) rule: if the lambda body is equal to a term 𝑡 , then the entire

lambda application is equivalent to the term 𝑡 . This is not correct because the e-class of the body

contains the term 𝑡 = 𝑥 + 1, and we cannot equate the whole lambda application to 𝑥 + 1, since 𝑥 is

“unmentionable” outside of the scope of the lambda.

The rule that we want is: if the lambda body is equal to a term 𝑡 , and that term 𝑡 does not
transitively mention 𝑥 , then the entire lambda application is equal to 𝑡 . Concretely, the e-class of

the lambda body would contain the terms {𝑥 + 1, 2 + 1, 3} when saturated. Under the above rule,

we would (correctly) equate the entire lambda application to the terms in {2 + 1, 3}.
However, this type of rule is hard to implement in existing equality saturation frameworks

because existing equality saturations frameworks like egg and egglog canonicalize the e-graph—the
body of the lambda application is not a set of terms, but instead an e-class. Furthermore, there is

no way to “cleave apart” an e-class to recover the terms that do not contain 𝑥 . Further research is

needed to discover how contextual equality saturation might support such an operation.
1

4 A SET-THEORETIC PERSPECTIVE
In this section we present ongoing work on a set-theoretic perspective on contextual equality

saturation. We aim to describe contextual equality saturation in an implementation-independent

manner and to suggest how a relational contextual equality saturation framework might practically

support contexts. We assume familiarity with lattices and equivalence relations; definitions for

lattices and equivalence relations can be found in the Definitions. We begin with a definition of

quotient sets, and we relate them to e-classes and a hierarchy of equivalence relations.

Definition 4.1. Let 𝐴 be a set, and let ∼ be an equivalence relation on 𝐴. The quotient set 𝐴/∼ is a

set of equivalence classes where two elements 𝑎, 𝑏 ∈ 𝐴 are in the same equivalence class iff 𝑎 ∼ 𝑏.

Example 4.2. Let Σ be a set of function symbols, and let 𝑅 = {𝑓 (𝑎, 𝑏, . . .) | 𝑓 , 𝑎, 𝑏 . . . ∈ Σ} be a set
of terms. For two terms 𝑎 and 𝑏, let 𝑎 ∼ 𝑏 iff 𝑎 and 𝑏 are equivalent terms. Then 𝑅/∼ is exactly the

set of e-classes of 𝑅 under ∼, and the quotient map 𝜋 : 𝑅 → 𝑅/∼ sends a term to its e-class (it is

exactly the find operation in egglog [12]).

1
We note that existing equality saturations can implement beta-reduction (as well as entire interpreters for a lambda

calculus) by using e-graph analyses to keep track of free and bound variables in an expression.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Towards Relational Contextual Equality Saturation 5

We note that 𝑅/∼ is still not the “e-graph” stored by egglog because terms within an equivalence

class in 𝑅/∼ still refer to terms in 𝑅; that is, 𝑅/∼ is not canonicalized, so it may be exponen-

tially large. We define the canonicalized database (𝑅/∼)∗ as (𝑅/∼)∗ = {{𝑓 (𝜋 (𝑎), 𝜋 (𝑏), . . .), . . .} |
𝑓 (𝑎, 𝑏, . . .), . . . ∈ 𝑅/∼}; i.e. we replace references to subterms with references to the subterms’

equivalence classes. This shrinks the size of each equivalence class because terms in 𝑅/∼ that used

to reference equivalent but not identical subterms are merged in (𝑅/∼)∗.
Theorem 4.3. Let 𝐵+ denote the transitive closure of 𝐵. The set of equivalence relations on 𝐴 forms

a lattice, where 𝑆 ⊓𝑇 def
= 𝑆 ∩𝑇 and 𝑆 ⊔𝑇 def

= (𝑆 ∪𝑇)+. Furthermore, ∼1 ≤ ∼2 iff ∼1 ⊆ ∼2.
Intuitively, the meet of two equivalence relations 𝑆 and 𝑇 is another equivalence relation 𝑈

where 𝑎 ∼ 𝑏 if 𝑎 is equivalent to 𝑏 under both 𝑆 and 𝑇 . The join of two equivalence relations 𝑆 and

𝑇 is another equivalence relation 𝑉 where 𝑎 ∼𝑉 𝑏 if 𝑎 is equivalent to 𝑏 by chaining together any
equivalences of 𝑆 or 𝑇 . (Transitive closure formally captures the notion of “chaining together.”)

Definition 4.4. Let 𝐴 be a set, let ∼𝐴 be the set of all equivalence relations on 𝐴, and let 𝐿 be

a lattice with an element called bottom, ⊥ ∈ 𝐿, satisfying ∀𝑙 ∈ 𝐿,⊥ ≤ 𝑙 . A context-annotated
equivalence relation is a mapping 𝜙 : 𝐿 → ∼𝐴 where 𝜙 preserves meet and join: i.e., for all 𝑎, 𝑏 ∈ 𝐿,
we have 𝜙 (𝑎 ⊓ 𝑏) = 𝜙 (𝑎) ⊓ 𝜙 (𝑏) and 𝜙 (𝑎 ⊔ 𝑏) = 𝜙 (𝑎) ⊔ 𝜙 (𝑏). 𝜙 is a lattice homomorphism; thus it

preseves order: 𝑙1 ≤ 𝑙2 =⇒ 𝜙 (𝑙1) ≤ 𝜙 (𝑙2).
Definition 4.4 suggests what structure contexts should have to be suitable for labels in contextual

equality saturation—they should have the property that as one learns more information, more,

not fewer, equalities become available. We associate with the base context, labeled ⊥, the fewest
equivalences 𝜙 (⊥)—these are the rewrites that are allowed in every context. As one traverses up

the context lattice, more information is learned, and more terms are equal.

In Section 3.1, our context lattice contained two elements: ⊥ represented a context where sort

order had to be preserved, so merge join and hash join were not equivalent. Underneath a sort

operator, however, we transition up the context lattice to a context 𝑠 where we no longer had to

preserve sort order. Thus, we verify that 𝜙 (⊥) ≤ 𝜙 (𝑠) (in fact, the equality is strict: 𝜙 (⊥) < 𝜙 (𝑠)).
Similarly, we (secretly) used the lattice structure of equivalence relations in Section 3.2. Under

each branch of the conditional, we transitioned up the lattice: in the then branch, we transitioned

from ⊥ to 𝑡 > ⊥, where 𝑎 > 𝑏 ≡ true. In the false branch, we transitioned up to 𝑓 > ⊥, where
¬(𝑎 > 𝑏) ≡ true. When we took the intersection of the terms for both branches of the ternary,

we applied meet (⊓) on the contextual equivalence relations for each branch, “updating” 𝜙 (⊥) ←
𝜙 ′ (⊥) = 𝜙 (⊥) ⊔ (𝜙 (𝑡) ⊓ 𝜙 (𝑓)). Observe that adding equivalences present in both 𝜙 (𝑡) and 𝜙 (𝑓)
into 𝜙 (⊥) does not violate the homomorphism order; see Definitions for a proof.

Lemma 4.5. Let 𝐴 be a set, and let ∼1 and ∼2 be two equivalence relations
on 𝐴 where ∼1 ≤ ∼2. Then we have (note 1 ⇐⇒ 2 =⇒ 3):

(1) The quotient map (which sends elements to their equivalence classes)
𝜋2 : 𝑅 → 𝑅/∼2 “factors through” the quotient map 𝜋1 : 𝑅 → 𝑅/∼1:
there is a map 𝑞 : 𝑅/∼1→ 𝑅/∼2 such that 𝜋2 = 𝑞 ◦ 𝜋1 See Fig. 3.

(2) The quotient set 𝐴/∼2 is “more coarse” than the quotient set 𝐴/∼1 in
the following sense: every equivalence class 𝑐 ∈ 𝐴/∼2 is a union of
one or more equivalence classes 𝐶 ⊆ 𝐴/∼1; that is, 𝑐 =

⋃
𝐶 .

(3) The coarser quotient set is smaller than the finer set: |𝐴/∼2 | ≤ |𝐴/∼1 |.

𝐴 𝐴/∼1

𝐴/∼2

𝜋1

𝜋2

𝑞

Fig. 3. 𝜋2 factors via
𝜋1 and 𝑞.

In Lemma 4.5, one can interpret ∼1 as some (possibly contextual) equivalence relation and ∼2 as
a coarser equivalence relation. Item (1) says that any database that stores a finer database of terms

𝑅/∼1 can always “recover” the coarser set of terms by applying 𝑞, which sends 𝑅/∼1→ 𝑅/∼2.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Tyler Hou, Shadaj Laddad, and Joseph M. Hellerstein

As observed in both egglog [12] and colored e-graphs [9], it can be exponentially faster to

e-match on a canonicalized e-graph versus an uncanonicalized e-graph. The existence of 𝑞 suggests
that contextual equality saturation frameworks can trade off space for time: instead of storing a

canonicalized copy of the e-graph for every equivalence relation, databases can store e-graphs for

a lower-bound of contexts. When e-matching is requested on some context that is not explicitly

materialized, frameworks have two options: either they can e-match directly on the stored e-graphs,

incurring the cost of a join on the equivalence relation; or they can apply 𝑞 on-the-fly and e-match

on a canonicalized e-graph. If ∼2 adds many equivalences, then the framework will have to join on

many terms, so it is likely cheaper to apply 𝑞 up front to canonicalize (a copy of) the e-graph to the

requested equivalence. On the other hand, ∼2 adds very few equivalences, then a join might be

cheaper. This type of reasoning is the bread and butter of classical database management systems,

which can collect statistics to estimate the size of intermediate relations and aggregations [7].

Finally, we note that item (3) in Lemma 4.5 implies that the canonicalized database is not monotonic!
As more equivalences are added, the size of the canonicalized database can shrink. Relational logic

systems like Datalog rely on monotonicity to be efficient and correct. Thus, a relational equality

saturation framework that supports contexts needs to syntactically prevent users from observing the

non-monotonicity of the database. (egglog already achieves this for a single equivalence relation.)

5 CONCLUSION
We have provided an overview of existing approaches to contextual equality saturation, and shown

three problems that contextual equality saturation may be able to (partially) solve. Our early work

points towards a set-theoretic model for contextual equality saturation that lends itself to natural

system optimizations from the database literature.

In the future, we plan to further develop our set-theoretic model and extend it to the relational

setting. In addition, we aim to develop a syntax that lets users easily express context-sensitive

rewrites in a relational model and manipulate equivalences across contexts, but prevents them

from observing non-monotonicity (which is crucial for performance and correctness). Finally, we

aim to explore whether existing Datalog systems like egglog and Soufflé can be adapted to support

a hierarchy of equivalence relations.

ACKNOWLEDGMENTS
This work is supported in part by National Science Foundation CISE Expeditions Award CCF-

1730628, IIS-1955488, IIS-2027575, GRFP Award DGE-2146752, DOE award DE-SC0016260, ARO

award W911NF2110339, and ONR award N00014-21-1-2724, and by gifts from Astronomer, Google,

IBM, Intel, Lacework, Microsoft, Mohamed Bin Zayed University of Artificial Intelligence, Nexla,

Samsung SDS, Uber, and VMware.

REFERENCES
[1] Samuel Coward, George A. Constantinides, and Theo Drane. 2023. Automating Constraint-Aware Datapath Optimiza-

tion using E-Graphs. arXiv:2303.01839 [cs.AR]

[2] Alexandre Drewery. 2022. Automatic Equivalence Verification for Translation Validation. Master’s thesis. ENS Rennes.

https://perso.eleves.ens-rennes.fr/people/alexandre.drewery/internship_report.pdf

[3] David S. Dummit and Richard M. Foote. 2004. Abstract Algebra. John Wiley & Sons, Hoboken, New Jersey.

[4] Goetz Graefe. 1995. The Cascades Framework for Query Optimization. IEEE Data Eng. Bull. 18, 3 (1995), 19–29.

http://sites.computer.org/debull/95SEP-CD.pdf

[5] G. Graefe and W.J. McKenna. 1993. The Volcano optimizer generator: extensibility and efficient search. In Proceedings
of IEEE 9th International Conference on Data Engineering. 209–218. https://doi.org/10.1109/ICDE.1993.344061

[6] George Grätzer. 2009. Lattice Theory: First Concepts and Distributive Lattices. Dover Publications, Mineola, New York.

https://arxiv.org/abs/2303.01839
https://perso.eleves.ens-rennes.fr/people/alexandre.drewery/internship_report.pdf
http://sites.computer.org/debull/95SEP-CD.pdf
https://doi.org/10.1109/ICDE.1993.344061

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Towards Relational Contextual Equality Saturation 7

[7] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart, Murali Venkatrao, Frank Pellow,

and Hamid Pirahesh. 2007. Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and

Sub-Totals. arXiv:cs/0701155 [cs.DB]

[8] Shadaj Laddad, Conor Power, Tyler Hou, Alvin Cheung, and Joseph M. Hellerstein. 2023. Optimizing Stateful Dataflow

with Local Rewrites. arXiv:2306.10585 [cs.PL]

[9] Eytan Singher and Shachar Itzhaky. 2023. Colored E-Graph: Equality Reasoning with Conditions.

arXiv:2305.19203 [cs.PL]

[10] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009. Equality saturation: a new approach to optimization.

In Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Savannah,
GA, USA) (POPL ’09). Association for Computing Machinery, New York, NY, USA, 264–276. https://doi.org/10.1145/

1480881.1480915

[11] Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha. 2021. Egg:

Fast and Extensible Equality Saturation. Proc. ACM Program. Lang. 5, POPL, Article 23 (January 2021), 29 pages.

https://doi.org/10.1145/3434304

[12] Yihong Zhang, Yisu Remy Wang, Oliver Flatt, David Cao, Philip Zucker, Eli Rosenthal, Zachary Tatlock, and Max

Willsey. 2023. Better Together: Unifying Datalog and Equality Saturation. Proc. ACM Program. Lang. 7, PLDI, Article
125 (June 2023), 25 pages. https://doi.org/10.1145/3591239

A DEFINITIONS
Definition A.1. A meet semilattice is an algebraic structure (𝑆,⊓) where ⊓ (pronounced meet, or

greatest lower bound) is a binary operator that is idempotent, commutative, and associative. Given

a join semilattice, we can define 𝑎 ≤ 𝑏 if 𝑎 ⊓ 𝑏 = 𝑎 [6].

Definition A.2. Dually, a join semilattice is an algebraic structure (𝑆,⊔) where ⊔ (pronounced

join, or least upper bound) is a binary operator that is idempotent, commutative, and associative.

Given a join semilattice, we can define 𝑎 ≥ 𝑏 if 𝑎 ⊔ 𝑏 = 𝑎 [6].

Definition A.3. A lattice is an algebraic structure (𝑆,⊓,⊔) where (𝑆,⊓) is a meet semilattice,

(𝑆,⊔) is a join semilattice, and ⊓ and ⊔ satisfy the absorption law 𝑎 ⊓ (𝑎 ⊔ 𝑏) = 𝑎 ⊔ (𝑎 ⊓ 𝑏) = 𝑎.

Example A.4. Let 𝑆 = Z, ⊓ = min, and ⊔ = max. Then (Z,min,max) is a lattice. For all 𝑎, 𝑏 ∈ Z:
(1) Both min and max are idempotent, associative, and commutative.

(2) The meet of 𝑎 and 𝑏 is min(𝑎, 𝑏), and if min(𝑎, 𝑏) = 𝑎 then 𝑎 ≤ 𝑏 (under the normal ordering).

(3) The join of 𝑎 and 𝑏 is max(𝑎, 𝑏), and if max(𝑎, 𝑏) = 𝑎 then 𝑎 ≥ 𝑏.

(4) min(𝑎,max(𝑎, 𝑏)) = 𝑎 = max(𝑎,min(𝑎, 𝑏)).

Definition A.5. A binary relation on a set 𝐴 is a subset 𝑅 of 𝐴 ×𝐴. For 𝑎, 𝑏 ∈ 𝐴, we write 𝑎 ∼ 𝑏 if

(𝑎, 𝑏) ∈ 𝑅. A binary relation is an equivalence relation if it is reflexive, symmetric, and transitive [3].

Lemma A.6. Let 𝜙 ′ (⊥) = 𝜙 (⊥) ⊔ (𝜙 (𝑡) ⊓ 𝜙 (𝑓)). Then 𝜙 ′ (⊥) ≤ 𝜙 (𝑡) and 𝜙 ′ (⊥) ≤ 𝜙 (𝑓).

Proof. Without loss of generality, we prove the lemma for 𝑡 ; the proof for 𝑓 proceeds similarly.

We verify the equality 𝜙 ′ (⊥) ⊓ 𝜙 (𝑡) = 𝜙 ′ (⊥). Note that 𝜙 (𝐿) is a lattice on sets with ⊔ = ∪ and

⊓ = ∩, so it is a distributive lattice.

𝜙 ′ (⊥) ⊓ 𝜙 (𝑡) = (𝜙 (⊥) ⊔ (𝜙 (𝑡) ⊓ 𝜙 (𝑓)) ⊓ 𝜙 (𝑡)
=
(
𝜙 (⊥) ⊓ 𝜙 (𝑡)

)
⊔
(
(𝜙 (𝑡) ⊓ 𝜙 (𝑓)) ⊓ 𝜙 (𝑡)

)
(distribute)

= 𝜙 (⊥) ⊔ (𝜙 (𝑡) ⊓ 𝜙 (𝑓))
= 𝜙 ′ (⊥)

□

https://arxiv.org/abs/cs/0701155
https://arxiv.org/abs/2306.10585
https://arxiv.org/abs/2305.19203
https://doi.org/10.1145/1480881.1480915
https://doi.org/10.1145/1480881.1480915
https://doi.org/10.1145/3434304
https://doi.org/10.1145/3591239

	Abstract
	1 Introduction
	2 Existing Approaches
	3 Case Studies
	3.1 Relational Query Optimization
	3.2 Simplifying Conditionals
	3.3 Lambda application

	4 A set-theoretic perspective
	5 Conclusion
	Acknowledgments
	References
	A Definitions

